Symmetry dictionary (symCIF) version 1.0.1
_space_group.name_H-M_ref
Name:'_space_group.name_H-M_ref'
Definition:
The short international Hermann-Mauguin space-group symbol as defined in Section 2.2.3 and given as the first item of each space-group table in Part 7 of International Tables for Crystallography Volume A (2002). Each component of the space-group name is separated by a space or an underscore character. The use of a space is strongly recommended. The underscore is only retained because it was used in old CIFs. It should not be used in new CIFs. Subscripts should appear without special symbols. Bars should be given as negative signs before the numbers to which they apply. The short international Hermann-Mauguin symbol determines the space-group type uniquely. However, the space-group type is better described using _space_group.IT_number or _space_group.name_Schoenflies. The short international Hermann-Mauguin symbol contains no information on the choice of basis or origin. To define the setting uniquely use _space_group.name_Hall, list the symmetry operations or generators, or give the transformation that relates the setting to the reference setting defined in this dictionary under _space_group.reference_setting. _space_group.name_H-M_alt may be used to give the Hermann-Mauguin symbol corresponding to the setting used. In the enumeration list, each possible value is identified by space-group number and Schoenflies symbol. Ref: International Tables for Crystallography (2002). Volume A, Space-group symmetry, edited by Th. Hahn, 5th ed. Dordrecht: Kluwer Academic Publishers.Examples:
'P 21/c' |
'P m n a' |
'P -1' |
'F m -3 m' |
'P 63/m m m' |
Type: char
Mandatory item: no
Related items: _space_group.name_H-M_full (alternate)
_space_group.name_H-M_alt (alternate)
The data value must be one of the following:
Enumeration | Number and Schoenflies symbol |
'P 1' | 1 C1.1 |
'P -1' | 2 Ci.1 |
'P 2' | 3 C2.1 |
'P 21' | 4 C2.2 |
'C 2' | 5 C2.3 |
'P m' | 6 Cs.1 |
'P c' | 7 Cs.2 |
'C m' | 8 Cs.3 |
'C c' | 9 Cs.4 |
'P 2/m' | 10 C2h.1 |
'P 21/m' | 11 C2h.2 |
'C 2/m' | 12 C2h.3 |
'P 2/c' | 13 C2h.4 |
'P 21/c' | 14 C2h.5 |
'C 2/c' | 15 C2h.6 |
'P 2 2 2' | 16 D2.1 |
'P 2 2 21' | 17 D2.2 |
'P 21 21 2' | 18 D2.3 |
'P 21 21 21' | 19 D2.4 |
'C 2 2 21' | 20 D2.5 |
'C 2 2 2' | 21 D2.6 |
'F 2 2 2' | 22 D2.7 |
'I 2 2 2' | 23 D2.8 |
'I 21 21 21' | 24 D2.9 |
'P m m 2' | 25 C2v.1 |
'P m c 21' | 26 C2v.2 |
'P c c 2' | 27 C2v.3 |
'P m a 2' | 28 C2v.4 |
'P c a 21' | 29 C2v.5 |
'P n c 2' | 30 C2v.6 |
'P m n 21' | 31 C2v.7 |
'P b a 2' | 32 C2v.8 |
'P n a 21' | 33 C2v.9 |
'P n n 2' | 34 C2v.10 |
'C m m 2' | 35 C2v.11 |
'C m c 21' | 36 C2v.12 |
'C c c 2' | 37 C2v.13 |
'A m m 2' | 38 C2v.14 |
'A e m 2' | 39 C2v.15 |
'A m a 2' | 40 C2v.16 |
'A e a 2' | 41 C2v.17 |
'F m m 2' | 42 C2v.18 |
'F d d 2' | 43 C2v.19 |
'I m m 2' | 44 C2v.20 |
'I b a 2' | 45 C2v.21 |
'I m a 2' | 46 C2v.22 |
'P m m m' | 47 D2h.1 |
'P n n n' | 48 D2h.2 |
'P c c m' | 49 D2h.3 |
'P b a n' | 50 D2h.4 |
'P m m a' | 51 D2h.5 |
'P n n a' | 52 D2h.6 |
'P m n a' | 53 D2h.7 |
'P c c a' | 54 D2h.8 |
'P b a m' | 55 D2h.9 |
'P c c n' | 56 D2h.10 |
'P b c m' | 57 D2h.11 |
'P n n m' | 58 D2h.12 |
'P m m n' | 59 D2h.13 |
'P b c n' | 60 D2h.14 |
'P b c a' | 61 D2h.15 |
'P n m a' | 62 D2h.16 |
'C m c m' | 63 D2h.17 |
'C m c e' | 64 D2h.18 |
'C m m m' | 65 D2h.19 |
'C c c m' | 66 D2h.20 |
'C m m e' | 67 D2h.21 |
'C c c e' | 68 D2h.22 |
'F m m m' | 69 D2h.23 |
'F d d d' | 70 D2h.24 |
'I m m m' | 71 D2h.25 |
'I b a m' | 72 D2h.26 |
'I b c a' | 73 D2h.27 |
'I m m a' | 74 D2h.28 |
'P 4' | 75 C4.1 |
'P 41' | 76 C4.2 |
'P 42' | 77 C4.3 |
'P 43' | 78 C4.4 |
'I 4' | 79 C4.5 |
'I 41' | 80 C4.6 |
'P -4' | 81 S4.1 |
'I -4' | 82 S4.2 |
'P 4/m' | 83 C4h.1 |
'P 42/m' | 84 C4h.2 |
'P 4/n' | 85 C4h.3 |
'P 42/n' | 86 C4h.4 |
'I 4/m' | 87 C4h.5 |
'I 41/a' | 88 C4h.6 |
'P 4 2 2' | 89 D4.1 |
'P 4 21 2' | 90 D4.2 |
'P 41 2 2' | 91 D4.3 |
'P 41 21 2' | 92 D4.4 |
'P 42 2 2' | 93 D4.5 |
'P 42 21 2' | 94 D4.6 |
'P 43 2 2' | 95 D4.7 |
'P 43 21 2' | 96 D4.8 |
'I 4 2 2' | 97 D4.9 |
'I 41 2 2' | 98 D4.10 |
'P 4 m m' | 99 C4v.1 |
'P 4 b m' | 100 C4v.2 |
'P 42 c m' | 101 C4v.3 |
'P 42 n m' | 102 C4v.4 |
'P 4 c c' | 103 C4v.5 |
'P 4 n c' | 104 C4v.6 |
'P 42 m c' | 105 C4v.7 |
'P 42 b c' | 106 C4v.8 |
'I 4 m m' | 107 C4v.9 |
'I 4 c m' | 108 C4v.10 |
'I 41 m d' | 109 C4v.11 |
'I 41 c d' | 110 C4v.12 |
'P -4 2 m' | 111 D2d.1 |
'P -4 2 c' | 112 D2d.2 |
'P -4 21 m' | 113 D2d.3 |
'P -4 21 c' | 114 D2d.4 |
'P -4 m 2' | 115 D2d.5 |
'P -4 c 2' | 116 D2d.6 |
'P -4 b 2' | 117 D2d.7 |
'P -4 n 2' | 118 D2d.8 |
'I -4 m 2' | 119 D2d.9 |
'I -4 c 2' | 120 D2d.10 |
'I -4 2 m' | 121 D2d.11 |
'I -4 2 d' | 122 D2d.12 |
'P 4/m m m' | 123 D4h.1 |
'P 4/m c c' | 124 D4h.2 |
'P 4/n b m' | 125 D4h.3 |
'P 4/n n c' | 126 D4h.4 |
'P 4/m b m' | 127 D4h.5 |
'P 4/m n c' | 128 D4h.6 |
'P 4/n m m' | 129 D4h.7 |
'P 4/n c c' | 130 D4h.8 |
'P 42/m m c' | 131 D4h.9 |
'P 42/m c m' | 132 D4h.10 |
'P 42/n b c' | 133 D4h.11 |
'P 42/n n m' | 134 D4h.12 |
'P 42/m b c' | 135 D4h.13 |
'P 42/m n m' | 136 D4h.14 |
'P 42/n m c' | 137 D4h.15 |
'P 42/n c m' | 138 D4h.16 |
'I 4/m m m' | 139 D4h.17 |
'I 4/m c m' | 140 D4h.18 |
'I 41/a m d' | 141 D4h.19 |
'I 41/a c d' | 142 D4h.20 |
'P 3' | 143 C3.1 |
'P 31' | 144 C3.2 |
'P 32' | 145 C3.3 |
'R 3' | 146 C3.4 |
'P -3' | 147 C3i.1 |
'R -3' | 148 C3i.2 |
'P 3 1 2' | 149 D3.1 |
'P 3 2 1' | 150 D3.2 |
'P 31 1 2' | 151 D3.3 |
'P 31 2 1' | 152 D3.4 |
'P 32 1 2' | 153 D3.5 |
'P 32 2 1' | 154 D3.6 |
'R 3 2' | 155 D3.7 |
'P 3 m 1' | 156 C3v.1 |
'P 3 1 m' | 157 C3v.2 |
'P 3 c 1' | 158 C3v.3 |
'P 3 1 c' | 159 C3v.4 |
'R 3 m' | 160 C3v.5 |
'R 3 c' | 161 C3v.6 |
'P -3 1 m' | 162 D3d.1 |
'P -3 1 c' | 163 D3d.2 |
'P -3 m 1' | 164 D3d.3 |
'P -3 c 1' | 165 D3d.4 |
'R -3 m' | 166 D3d.5 |
'R -3 c' | 167 D3d.6 |
'P 6' | 168 C6.1 |
'P 61' | 169 C6.2 |
'P 65' | 170 C6.3 |
'P 62' | 171 C6.4 |
'P 64' | 172 C6.5 |
'P 63' | 173 C6.6 |
'P -6' | 174 C3h.1 |
'P 6/m ' | 175 C6h.1 |
'P 63/m' | 176 C6h.2 |
'P 6 2 2' | 177 D6.1 |
'P 61 2 2' | 178 D6.2 |
'P 65 2 2' | 179 D6.3 |
'P 62 2 2' | 180 D6.4 |
'P 64 2 2' | 181 D6.5 |
'P 63 2 2' | 182 D6.6 |
'P 6 m m' | 183 C6v.1 |
'P 6 c c' | 184 C6v.2 |
'P 63 c m' | 185 C6v.3 |
'P 63 m c' | 186 C6v.4 |
'P -6 m 2' | 187 D3h.1 |
'P -6 c 2' | 188 D3h.2 |
'P -6 2 m' | 189 D3h.3 |
'P -6 2 c' | 190 D3h.4 |
'P 6/m m m' | 191 D6h.1 |
'P 6/m c c' | 192 D6h.2 |
'P 63/m c m' | 193 D6h.3 |
'P 63/m m c' | 194 D6h.4 |
'P 2 3' | 195 T.1 |
'F 2 3' | 196 T.2 |
'I 2 3' | 197 T.3 |
'P 21 3' | 198 T.4 |
'I 21 3' | 199 T.5 |
'P m -3' | 200 Th.1 |
'P n -3' | 201 Th.2 |
'F m -3' | 202 Th.3 |
'F d -3' | 203 Th.4 |
'I m -3' | 204 Th.5 |
'P a -3' | 205 Th.6 |
'I a -3' | 206 Th.7 |
'P 4 3 2' | 207 O.1 |
'P 42 3 2' | 208 O.2 |
'F 4 3 2' | 209 O.3 |
'F 41 3 2' | 210 O.4 |
'I 4 3 2' | 211 O.5 |
'P 43 3 2' | 212 O.6 |
'P 41 3 2' | 213 O.7 |
'I 41 3 2' | 214 O.8 |
'P -4 3 m' | 215 Td.1 |
'F -4 3 m' | 216 Td.2 |
'I -4 3 m' | 217 Td.3 |
'P -4 3 n' | 218 Td.4 |
'F -4 3 c' | 219 Td.5 |
'I -4 3 d' | 220 Td.6 |
'P m -3 m' | 221 Oh.1 |
'P n -3 n' | 222 Oh.2 |
'P m -3 n' | 223 Oh.3 |
'P n -3 m' | 224 Oh.4 |
'F m -3 m' | 225 Oh.5 |
'F m -3 c' | 226 Oh.6 |
'F d -3 m' | 227 Oh.7 |
'F d -3 c' | 228 Oh.8 |
'I m -3 m' | 229 Oh.9 |
'I a -3 d' | 230 Oh.10 |
Category: space_group