Symmetry dictionary (symCIF) version 1.0.1
_space_group.name_Schoenflies
Name:'_space_group.name_Schoenflies'
Definition:
The Schoenflies symbol as listed in International Tables for Crystallography Volume A denoting the proper affine class (i.e. orientation-preserving affine class) of space groups (space-group type) to which the space group belongs. This symbol defines the space-group type independently of the coordinate system in which the space group is expressed. The symbol is given with a period, '.', separating the Schoenflies point group and the superscript. Ref: International Tables for Crystallography (2002). Volume A, Space-group symmetry, edited by Th. Hahn, 5th ed. Dordrecht: Kluwer Academic Publishers.Example:
C2h.5 | Schoenflies symbol for space group No. 14 |
Type: char
Mandatory item: no
The data value must be one of the following:
C1.1 |
Ci.1 |
C2.1 |
C2.2 |
C2.3 |
Cs.1 |
Cs.2 |
Cs.3 |
Cs.4 |
C2h.1 |
C2h.2 |
C2h.3 |
C2h.4 |
C2h.5 |
C2h.6 |
D2.1 |
D2.2 |
D2.3 |
D2.4 |
D2.5 |
D2.6 |
D2.7 |
D2.8 |
D2.9 |
C2v.1 |
C2v.2 |
C2v.3 |
C2v.4 |
C2v.5 |
C2v.6 |
C2v.7 |
C2v.8 |
C2v.9 |
C2v.10 |
C2v.11 |
C2v.12 |
C2v.13 |
C2v.14 |
C2v.15 |
C2v.16 |
C2v.17 |
C2v.18 |
C2v.19 |
C2v.20 |
C2v.21 |
C2v.22 |
D2h.1 |
D2h.2 |
D2h.3 |
D2h.4 |
D2h.5 |
D2h.6 |
D2h.7 |
D2h.8 |
D2h.9 |
D2h.10 |
D2h.11 |
D2h.12 |
D2h.13 |
D2h.14 |
D2h.15 |
D2h.16 |
D2h.17 |
D2h.18 |
D2h.19 |
D2h.20 |
D2h.21 |
D2h.22 |
D2h.23 |
D2h.24 |
D2h.25 |
D2h.26 |
D2h.27 |
D2h.28 |
C4.1 |
C4.2 |
C4.3 |
C4.4 |
C4.5 |
C4.6 |
S4.1 |
S4.2 |
C4h.1 |
C4h.2 |
C4h.3 |
C4h.4 |
C4h.5 |
C4h.6 |
D4.1 |
D4.2 |
D4.3 |
D4.4 |
D4.5 |
D4.6 |
D4.7 |
D4.8 |
D4.9 |
D4.10 |
C4v.1 |
C4v.2 |
C4v.3 |
C4v.4 |
C4v.5 |
C4v.6 |
C4v.7 |
C4v.8 |
C4v.9 |
C4v.10 |
C4v.11 |
C4v.12 |
D2d.1 |
D2d.2 |
D2d.3 |
D2d.4 |
D2d.5 |
D2d.6 |
D2d.7 |
D2d.8 |
D2d.9 |
D2d.10 |
D2d.11 |
D2d.12 |
D4h.1 |
D4h.2 |
D4h.3 |
D4h.4 |
D4h.5 |
D4h.6 |
D4h.7 |
D4h.8 |
D4h.9 |
D4h.10 |
D4h.11 |
D4h.12 |
D4h.13 |
D4h.14 |
D4h.15 |
D4h.16 |
D4h.17 |
D4h.18 |
D4h.19 |
D4h.20 |
C3.1 |
C3.2 |
C3.3 |
C3.4 |
C3i.1 |
C3i.2 |
D3.1 |
D3.2 |
D3.3 |
D3.4 |
D3.5 |
D3.6 |
D3.7 |
C3v.1 |
C3v.2 |
C3v.3 |
C3v.4 |
C3v.5 |
C3v.6 |
D3d.1 |
D3d.2 |
D3d.3 |
D3d.4 |
D3d.5 |
D3d.6 |
C6.1 |
C6.2 |
C6.3 |
C6.4 |
C6.5 |
C6.6 |
C3h.1 |
C6h.1 |
C6h.2 |
D6.1 |
D6.2 |
D6.3 |
D6.4 |
D6.5 |
D6.6 |
C6v.1 |
C6v.2 |
C6v.3 |
C6v.4 |
D3h.1 |
D3h.2 |
D3h.3 |
D3h.4 |
D6h.1 |
D6h.2 |
D6h.3 |
D6h.4 |
T.1 |
T.2 |
T.3 |
T.4 |
T.5 |
Th.1 |
Th.2 |
Th.3 |
Th.4 |
Th.5 |
Th.6 |
Th.7 |
O.1 |
O.2 |
O.3 |
O.4 |
O.5 |
O.6 |
O.7 |
O.8 |
Td.1 |
Td.2 |
Td.3 |
Td.4 |
Td.5 |
Td.6 |
Oh.1 |
Oh.2 |
Oh.3 |
Oh.4 |
Oh.5 |
Oh.6 |
Oh.7 |
Oh.8 |
Oh.9 |
Oh.10 |
Category: space_group