Modulated and composite structures dictionary (msCIF) version 1.0.1
_cell_subsystem_matrix_W_
Names:'_cell_subsystem_matrix_W_1_1' '_cell_subsystem_matrix_W_1_2' '_cell_subsystem_matrix_W_1_3' '_cell_subsystem_matrix_W_1_4' '_cell_subsystem_matrix_W_1_5' '_cell_subsystem_matrix_W_1_6' '_cell_subsystem_matrix_W_1_7' '_cell_subsystem_matrix_W_1_8' '_cell_subsystem_matrix_W_1_9' '_cell_subsystem_matrix_W_1_10' '_cell_subsystem_matrix_W_1_11' '_cell_subsystem_matrix_W_2_1' '_cell_subsystem_matrix_W_2_2' '_cell_subsystem_matrix_W_2_3' '_cell_subsystem_matrix_W_2_4' '_cell_subsystem_matrix_W_2_5' '_cell_subsystem_matrix_W_2_6' '_cell_subsystem_matrix_W_2_7' '_cell_subsystem_matrix_W_2_8' '_cell_subsystem_matrix_W_2_9' '_cell_subsystem_matrix_W_2_10' '_cell_subsystem_matrix_W_2_11' '_cell_subsystem_matrix_W_3_1' '_cell_subsystem_matrix_W_3_2' '_cell_subsystem_matrix_W_3_3' '_cell_subsystem_matrix_W_3_4' '_cell_subsystem_matrix_W_3_5' '_cell_subsystem_matrix_W_3_6' '_cell_subsystem_matrix_W_3_7' '_cell_subsystem_matrix_W_3_8' '_cell_subsystem_matrix_W_3_9' '_cell_subsystem_matrix_W_3_10' '_cell_subsystem_matrix_W_3_11' '_cell_subsystem_matrix_W_4_1' '_cell_subsystem_matrix_W_4_2' '_cell_subsystem_matrix_W_4_3' '_cell_subsystem_matrix_W_4_4' '_cell_subsystem_matrix_W_4_5' '_cell_subsystem_matrix_W_4_6' '_cell_subsystem_matrix_W_4_7' '_cell_subsystem_matrix_W_4_8' '_cell_subsystem_matrix_W_4_9' '_cell_subsystem_matrix_W_4_10' '_cell_subsystem_matrix_W_4_11' '_cell_subsystem_matrix_W_5_1' '_cell_subsystem_matrix_W_5_2' '_cell_subsystem_matrix_W_5_3' '_cell_subsystem_matrix_W_5_4' '_cell_subsystem_matrix_W_5_5' '_cell_subsystem_matrix_W_5_6' '_cell_subsystem_matrix_W_5_7' '_cell_subsystem_matrix_W_5_8' '_cell_subsystem_matrix_W_5_9' '_cell_subsystem_matrix_W_5_10' '_cell_subsystem_matrix_W_5_11' '_cell_subsystem_matrix_W_6_1' '_cell_subsystem_matrix_W_6_2' '_cell_subsystem_matrix_W_6_3' '_cell_subsystem_matrix_W_6_4' '_cell_subsystem_matrix_W_6_5' '_cell_subsystem_matrix_W_6_6' '_cell_subsystem_matrix_W_6_7' '_cell_subsystem_matrix_W_6_8' '_cell_subsystem_matrix_W_6_9' '_cell_subsystem_matrix_W_6_10' '_cell_subsystem_matrix_W_6_11' '_cell_subsystem_matrix_W_7_1' '_cell_subsystem_matrix_W_7_2' '_cell_subsystem_matrix_W_7_3' '_cell_subsystem_matrix_W_7_4' '_cell_subsystem_matrix_W_7_5' '_cell_subsystem_matrix_W_7_6' '_cell_subsystem_matrix_W_7_7' '_cell_subsystem_matrix_W_7_8' '_cell_subsystem_matrix_W_7_9' '_cell_subsystem_matrix_W_7_10' '_cell_subsystem_matrix_W_7_11' '_cell_subsystem_matrix_W_8_1' '_cell_subsystem_matrix_W_8_2' '_cell_subsystem_matrix_W_8_3' '_cell_subsystem_matrix_W_8_4' '_cell_subsystem_matrix_W_8_5' '_cell_subsystem_matrix_W_8_6' '_cell_subsystem_matrix_W_8_7' '_cell_subsystem_matrix_W_8_8' '_cell_subsystem_matrix_W_8_9' '_cell_subsystem_matrix_W_8_10' '_cell_subsystem_matrix_W_8_11' '_cell_subsystem_matrix_W_9_1' '_cell_subsystem_matrix_W_9_2' '_cell_subsystem_matrix_W_9_3' '_cell_subsystem_matrix_W_9_4' '_cell_subsystem_matrix_W_9_5' '_cell_subsystem_matrix_W_9_6' '_cell_subsystem_matrix_W_9_7' '_cell_subsystem_matrix_W_9_8' '_cell_subsystem_matrix_W_9_9' '_cell_subsystem_matrix_W_9_10' '_cell_subsystem_matrix_W_9_11' '_cell_subsystem_matrix_W_10_1' '_cell_subsystem_matrix_W_10_2' '_cell_subsystem_matrix_W_10_3' '_cell_subsystem_matrix_W_10_4' '_cell_subsystem_matrix_W_10_5' '_cell_subsystem_matrix_W_10_6' '_cell_subsystem_matrix_W_10_7' '_cell_subsystem_matrix_W_10_8' '_cell_subsystem_matrix_W_10_9' '_cell_subsystem_matrix_W_10_10' '_cell_subsystem_matrix_W_10_11' '_cell_subsystem_matrix_W_11_1' '_cell_subsystem_matrix_W_11_2' '_cell_subsystem_matrix_W_11_3' '_cell_subsystem_matrix_W_11_4' '_cell_subsystem_matrix_W_11_5' '_cell_subsystem_matrix_W_11_6' '_cell_subsystem_matrix_W_11_7' '_cell_subsystem_matrix_W_11_8' '_cell_subsystem_matrix_W_11_9' '_cell_subsystem_matrix_W_11_10' '_cell_subsystem_matrix_W_11_11'
Definition:
In the case of composites, for each subsystem the matrix W as defined in van Smaalen (1991); see also van Smaalen (1995). Its dimension must match (_cell_modulation_dimension+3)*(_cell_modulation_dimension+3). Intergrowth compounds are composed of several periodic substructures in which the reciprocal lattices of two different subsystems are incommensurate in at least one direction. The indexing of the whole diffraction diagram with integer indices requires more than three reciprocal basic vectors. However, the distinction between main reflections and satellites is not as obvious as in normal incommensurate structures. Indeed, true satellites are normally difficult to locate for composites and the modulation wave vectors are reciprocal vectors of the other subsystem(s) referred to the reciprocal basis of one of them. The choice of the enlarged reciprocal basis {a*, b*, c*, q~1~,..., q~d~} is completely arbitrary, but the reciprocal basis of each subsystem is always known through the W matrices. These matrices [(3+d)x(3+d)-dimensional], one for each subsystem, can be blocked as follows: (Z^\n^~3~ Z^\n^~d~) W^\n^= ( ) (V^\n^~3~ V^\n^~d~), the dimension of each block being (3x3), (3xd), (dx3) and (dxd) for Z^\n^~3~, Z^\n^~d~, V^\n^~3~ and V^\n^~d~, respectively. For example, Z^\n^ expresses the reciprocal basis of each subsystem in terms of the basis {a*, b*, c*, q~1~ ,..., q~d~}. W^\n^ also gives the irrational components of the modulation wave vectors of each subsystem in its own three-dimensional reciprocal basis {a~\n~*, b~\n~*, c~\n~*} and the superspace group of a given subsystem from the unique superspace group of the composite. The structure of these materials is always described by a set of incommensurate structures, one for each subsystem. The atomic coordinates, modulation parameters and wave vectors used for describing the modulation(s) are always referred to the (direct or reciprocal) basis of each particular subsystem. Although expressing the structural results in the chosen common basis is possible (using the matrices W), it is less confusing to use this alternative description. Atomic coordinates are only referred to a common basis when interatomic distances are calculated. Usually, the reciprocal vectors {a*, b* and c*} span the lattice of main reflections of one of the subsystems and therefore its W matrix is the unit matrix. For composites described in a single data block using *_subsystem_code pointers, the cell parameters, the superspace group and the measured modulation wave vectors (see CELL_WAVE_VECTOR below) correspond to the reciprocal basis described in _cell_reciprocal_basis_description and coincide with the reciprocal basis of the specific subsystem (if any) whose W matrix is the unit matrix. The cell parameters and the symmetry of the remaining subsystems can be derived using the appropriate W matrices. In any case (single or multiblock CIF), the values assigned to the items describing the atomic parameters (including the wave vectors used to describe the modulations) are always the same and are referred to the basis of each particular subsystem. Such a basis will be explicitly given in a multiblock CIF or should be calculated (with the appropriate W matrix) in the case of a single block description of the composite. Ref: Smaalen, S. van (1991). Phys. Rev. B, 43, 11330-11341. Smaalen, S. van (1995). Crystallogr. Rev. 4, 79-202.
Appears in list containing _cell_subsystem_code
Enumeration default: 0
Type: numb
Category: cell_subsystem