[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Approval requested for symmetry dictionary
- To: Multiple recipients of list <comcifs-l@iucr.org>
- Subject: Approval requested for symmetry dictionary
- From: Brian McMahon <bm@iucr.org>
- Date: Thu, 31 May 2001 15:49:54 +0100 (BST)
Dear COMCIFS It is my pleasure to bring before you for your approval a new dictionary, cif_sym.dic, containing categories and data names intended to carry detailed information about crystallographic symmetry. If approved, these items are candidates for superseding the existing small symmetry-specific categories in the core dictionary. This dictionary is expressed in a DDL2 formalism to facilitate integration with the core dictionary as embedded in mmCIF; upon approval a DDL1 version will be derived from this suitable for mating with the DDL1 core. This dictionary has been developed under the active supervision of David Brown, and has already passed through several cycles of revision under the eyes of the COMCIFS Dictionary Review Committee. Please review this dictionary and indicate your approval or reservations before the end of June. The dictionary accompanies this mail as an attachment and will also be accessible from 1 June at the URL http://www.iucr.org/iucr-top/cif/sym/cif_sym_0.9.dic Regards Brian _______________________________________________________________________________ Brian McMahon tel: +44 1244 342878 Research and Development Officer fax: +44 1244 314888 International Union of Crystallography e-mail: bm@iucr.ac.uk 5 Abbey Square, Chester CH1 2HU, England bm@iucr.org
########################################################## # # SYMMETRY CIF DICTIONARY # ########################################################## # # This dictionary is designed to provide the data names # required to describe crystallographic symmetry. # # It is written in DDL2 # # This version, 0.09, is dated 2001-05-31 # # The categories and items defined in this version are: # # space_group (General information on the space group) # Bravais_type # centring_type # crystal_system # id (Parent to various .sg_id's) # Laue_class # IT_coordinate_system_code # IT_ number # name_Hall # name_H-M # name_H-M_alt # name_H-M_alt_description # name_H-M_full # name_Schoenflies # Patterson_name_H-M # point_group_H-M # reference_setting # transform_rotation_xyz # transform_origin_shift # space_group_symop (Symmetry operators) # id (parent to various .symop_id's) # generator_xyz # operation_description # operation_xyz # sg_id # space_group_Wyckoff (Details of the Wyckoff positions) # coords_xyz # id (parent to various .wyckoff_id's to be defined) # letter # multiplicity # sg_id # site_symmetry # ########################################################## data_cif_sym.dic _dictionary.title 'cif symmetry dictionary' _dictionary.version 0.09 _dictionary.datablock_id cif_sym.dic ################################################ # # CATEGORY: SPACE_GROUP # ################################################ save_SPACE_GROUP _category.id space_group _category.description ; Contains all the data items that refer to the space group as a whole, such as its name, Laue group etc. It may be looped, for example, in a list of space groups and their properties. Space group types are identified by their International Tables for Crystallography Vol A number or Schoenflies symbol. Specific settings of the space groups can be identified by their Hall symbol, by specifying their symmetry operations or generators, or by giving the transformation that relates the specific setting to the reference setting based on International Tables for Crystallography Vol. A and stored in this dictionary. The commonly-used Hermann-Mauguin symbol determines the space group type uniquely but several different Hermann-Mauguin symbols may refer to the same space group type. It contains information on the choice of the basis, but not on the choice of origin. ; _category.mandatory_code yes _category_examples.case ; _space_group.id 1 _space_group.name_H-M C_2/c _space_group.name_Schoenflies C2h^6 _space_group.IT_number 15 _space_group.name_Hall -C_2yc _space_group.Bravais_type mS _space_group.Laue_class 2/m _space_group.crystal_system monoclinic _space_group.centring_type C _space_group.Patterson_name_H-M C_2/m ; _category_key.name '_space_group.id' save_ ############################################# ############################################################################## save__space_group.bravais_type _item.name '_space_group.bravais_type' _item.category_id space_group _item.mandatory_code no loop_ _item_examples.case _item_examples.detail aP 'triclinic (anorthic) primitive lattice' _item_description.description ; The symbol denoting the lattice type(Bravais type) to which the translational subgroup (vector lattice) of the space group belongs. It consisting of a lower case letter indicating the crystal system followed by an upper case letter indicating the lattice centring. The setting-independent symbol mS replaces the setting-dependent symbols mB and mC, and the setting-independent symbol oS replaces the setting-dependent symbols oA, oB and oC (see International Tables for Crystallography A 1995 edition p.13). ; _item_type.code char loop_ _item_enumeration.value aP mP mS oP oS oI oF tP tI hP hR cP cI cF save_ #--------------------------------------------------- save__space_group.centring_type _item.name '_space_group.centring_type' _item.category_id space_group _item.mandatory_code no _item_description.description ; Symbol for the lattice centring. This symbol may be dependent on the coordinate system chosen. ; _item_type.code char loop_ _item_enumeration.value _item_enumeration.detail P 'primitive no centring' A 'a face centred (0,1/2,1/2)' B 'b face centred (1/2,0,1/2)' C 'c face centred (1/2,1/2,0)' F 'all faces centred (0,1/2,1/2),(1/2,0,1/2),(1/2,1/2,0)' I 'body centred (1/2,1/2,1/2)' R 'rhombohedral obverse centred (2/3,1/3,1/3),(1/3,2/3,2/3)' Rrev 'rhombohedral reverse centred (1/3,2/3,1/3),(2/3,1/3,2/3)' H 'hexagonal centred (2/3,1/3,0),(1/3,2/3,0)' save_ #----------------------------------------- save__space_group.crystal_system _item.name '_space_group.crystal_system' _item.category_id space_group _item.mandatory_code no _item_description.description ; The name of the system of geometric crystal classes of space groups (crystal system) to which the space group belongs. Note that crystals with the hR lattice type belong to the trigonal system. ; _item_type.code char loop_ _item_enumeration.value triclinic monoclinic orthorhombic tetragonal trigonal hexagonal cubic _item_aliases.alias_name '_symmetry_cell_setting' _item_aliases.dictionary cif_core.dic _item_aliases.version 1.0 save_ #-------------------------------------------------- save__space_group.id loop_ _item.name _item.category_id _item.mandatory_code '_space_group.id' space_group yes '_space_group_symop.sg_id' space_group_symop no '_space_group_Wyckoff.sg_id' space_group_Wyckoff no _item_description.description ; This is an identifier needed if _space_group_* items are looped. ; _item_type.code char loop_ _item_linked.child_name _item_linked.parent_name '_space_group_symop.sg_id' '_space_group.id' '_space_group_Wyckoff.sg_id' '_space_group.id' save_ #------------------------------------------------ save__space_group.IT_coordinate_system_code _item.name '_space_group.IT_coordinate_system_code' _item.category_id space_group _item.mandatory_code no _item_description.description ; A qualifier taken from the enumeration list identifying which setting in International Tables for Crystallography (3rd Edn) Vol. A (IT) is used. See IT Table 4.3.1 Section 2.16, Table 2.16.1 Section 2.16.(i) and Fig. 2.6.4. This item is not computer interpretable and cannot be used to define the coordinate system. Use _space_group.transform_* instead. ; _item_type.code char loop_ _item_enumeration.value _item_enumeration.detail 'b1' 'monoclinic unique axis b, cell choice 1, abc' 'b2' 'monoclinic unique axis b, cell choice 2, abc' 'b3' 'monoclinic unique axis b, cell choice 3, abc' '-b1' 'monoclinic unique axis b, cell choice 1, c-ba' '-b2' 'monoclinic unique axis b, cell choice 2, c-ba' '-b3' 'monoclinic unique axis b, cell choice 3, c-ba' 'c1' 'monoclinic unique axis c, cell choice 1, abc' 'c2' 'monoclinic unique axis c, cell choice 2, abc' 'c3' 'monoclinic unique axis c, cell choice 3, abc' '-c1' 'monoclinic unique axis c, cell choice 1, ba-c' '-c2' 'monoclinic unique axis c, cell choice 2, ba-c' '-c3' 'monoclinic unique axis c, cell choice 3, ba-c' 'a1' 'monoclinic unique axis a, cell choice 1, abc' 'a2' 'monoclinic unique axis a, cell choice 2, abc' 'a3' 'monoclinic unique axis a, cell choice 3, abc' '-a1' 'monoclinic unique axis a, cell choice 1, -acb' '-a2' 'monoclinic unique axis a, cell choice 2, -acb' '-a3' 'monoclinic unique axis a, cell choice 3, -acb' 'abc' 'orthorhombic' 'ba-c' 'orthorhombic' 'cab' 'orthorhombic' '-cba' 'orthorhombic' 'bca' 'orthorhombic' 'a-cb' 'orthorhombic' '1abc' 'orthorhombic origin choice 1' '1ba-c' 'orthorhombic origin choice 1' '1cab' 'orthorhombic origin choice 1' '1-cba' 'orthorhombic origin choice 1' '1bca' 'orthorhombic origin choice 1' '1a-cb' 'orthorhombic origin choice 1' '2abc' 'orthorhombic origin choice 2' '2ba-c' 'orthorhombic origin choice 2' '2cab' 'orthorhombic origin choice 2' '2-cba' 'orthorhombic origin choice 2' '2bca' 'orthorhombic origin choice 2' '2a-cb' 'orthorhombic origin choice 2' '1' 'tetragonal or cubic origin choice 1' '2' 'tetragonal or cubic origin choice 2' 'h' 'trigonal using hexagonal axes' 'r' 'trigonal using rhombohedral axes' save_ #---------------------------------------------- save__space_group.IT_number _item.name '_space_group.IT_number' _item.category_id space_group _item.mandatory_code no _item_description.description ; The number as assigned in International Tables for Crystallography Vol A, specifying the proper affine class (i.e. the orientation preserving affine class) of space groups (crystallographic space group type) to which the space group belongs. This number defines the space group type but not the coordinate system in which it is expressed. ; _item_type.code numb _item_range.minimum 1 _item_range.maximum 230 _item_aliases.alias_name '_symmetry_Int_Tables_number' _item_aliases.dictionary cif_core.dic _item_aliases.version 1.0 save_ #------------------------------------------------ save__space_group.laue_class _item.name '_space_group.Laue_class' _item.category_id space_group _item.mandatory_code no loop_ _item_enumeration.value -1 2/m mmm 4/m 4/mmm -3 -3m 6/m 6/mmm m-3 m-3m _item_description.description ; The Hermann-Mauguin symbol of the geometric crystal class of the point group of the space group where a center of inversion is added if not already present. ; _item_type.code char save_ #----------------------------------------------- save__space_group.name_hall _item.name '_space_group.name_Hall' _item.category_id space_group _item.mandatory_code no loop_ _item_examples.case _item_examples.detail 'P 2c -2ac' 'Equivalent to Pca21' -I_4bd_2ab_3 'Equivalent to Ia3d' _item_description.description ; Space group symbol defined by Hall (Acta Cryst. (1981) A37, 517-525) (See also International Tables for Crystallography Vol.B (1993) 1.4 Appendix B). A space or underline separates rotation symbols referring to different axes. _space_group.name_Hall uniquely defines the space group and its reference to a particular coordinate system. ; _item_type.code char _item_aliases.alias_name '_symmetry_space_group_name_Hall' _item_aliases.dictionary cif_core.dic _item_aliases.version 1.0 save_ #------------------------------------------------- save__space_group.name_H-M _item.name '_space_group.name_H-M' _item.category_id space_group _item.mandatory_code no loop_ _item_examples.case 'P 21/c' P21_c 'P m n a' 'P -1' F_m_-3_m P_63/m_m_m _item_description.description ; The Short International Hermann-Mauguin space group symbol as defined on pp 14ff and given as the first item of each Space Group Table in Section 7 of International Tables for Crystallography Vol.A (1983). A space or underline separates each symbol referring to different axes. Subscripts should appear without special symbols. Bars should be given as negative signs before the numbers to which they apply. The Short International Hermann-Mauguin symbol determines the space group type uniquely. However, the space group type is better described using the *.IT_number or *.name_Schoenflies. The Short International Hermann-Mauguin symbol contains no information on the choice of basis or origin. To define the setting uniquely use *.name_Hall, list the symmetry operations or generators, or give the transformation that relates the setting to the reference setting defined in this dictionary under *.reference_setting. ; _item_type.code char loop_ _item_related.related_name _item_related.function_code '_space_group.name_H-M_full' alternate '_space_group.name_H-M_alt' alternate _item_aliases.alias_name '_symmetry_space_group_name_H-M' _item_aliases.dictionary cif_core.dic _item_aliases.version 1.0 save_ #---------------------------------------------- save__space_group.name_H-M_alt _item.name '_space_group.name_H-M_alt' _item.category_id space_group _item.mandatory_code no _item_type.code char loop_ _item_examples.case _item_examples.detail ; loop_ _space_group.name_H-M_alt _space_group.name_H-M_alt_description C_m_c_m(b_n_n) 'Extended Hermann-Mauguin symbol' 'C 2/c 2/m 21/m' 'Full unconventional Hermann-Mauguin symbol' ; 'two examples for the space group number 63.' _item_description.description ; *.name_H-M_alt allows for an alternative Hermann-Mauguin symbol to be given. The way in which this item is used is determined by the user and should be described in the item _space_group.name_H-M_alt_description. It may, for example, be used to give one of the extended Hermann-Mauguin symbols given in Table 4.3.1 of International Tables for Crystallography Vol A (1983) or a full Hermann-Mauguin symbol for an unconventional setting. A space or underline separates each symbol referring to different axes. Subscripts should appear without special symbols. Bars should be given as negative signs before the numbers to which they apply. The commonly used Hermann-Mauguin symbol determines the space group type uniquely but a given space group type may be described by more than one Hermann-Mauguin symbol. The space group type is best described using the *.IT_number or *.name_Schoenflies. The Hermann-Mauguin symbol may contain information on the choice of basis though not on the choice of origin. To define the setting uniquely use *.name_Hall, list the symmetry operations or generators, or give the transformation that relates the setting to the reference setting defined in this dictionary under *.reference_setting. ; loop_ _item_related.related_name _item_related.function_code '_space_group.name_H-M' alternate '_space_group.name_H-M_full' alternate _item_aliases.alias_name '_symmetry_space_group_name_H-M_alt' _item_aliases.dictionary cif_core.dic _item_aliases.version 1.0 save_ #--------------------------------------------------- save__space_group.name_H-M_alt_description _item.name '_space_group.name_H-M_alt_description' _item.category_id space_group _item.mandatory_code no _item_description.description ; A free text description of the code appearing in _space_group.name_H-M_alt ; _item_type.code char save_ #-------------------------------------------------- save__space_group.name_H-M_full _item.name '_space_group.name_H-M_full' _item.category_id space_group _item.mandatory_code no loop_ _item_examples.case _item_examples.detail 'P 21/n 21/m 21/a' 'full symbol for Pnma' P_21/n_21/m_21/a 'an alternative way of writing Pnma' _item_description.description ; The Full International Hermann-Mauguin space group symbol as defined on pp 14ff and given as the second item of the second line of one of the Space Group Tables of Section 7 of International Tables for Crystallography Vol. A (1983). A space or underline separates each symbol referring to different axes. Subscripts should appear without special symbols. Bars should be given as negative signs before the numbers to which they apply. The commonly used Hermann-Mauguin symbol determines the space group type uniquely but a given space group type may be described by more than one Hermann-Mauguin symbol. The space group type is best described using the *.IT_number or *.name_Schoenflies. The Full International Hermann-Mauguin symbol contains information about the choice of basis for monoclinic and orthorhombic space groups but does not give information about the choice of origin. To define the setting uniquely use *.name_Hall, list the symmetry operations or generators, or give the transformation relating the setting used to the reference setting defined in this dictionary under *.reference_setting. ; _item_type.code char loop_ _item_related.related_name _item_related.function_code '_space_group.name_H-M' alternate '_space_group.name_H-M_alt' alternate _item_aliases.alias_name '_symmetry_space_group_name_H-M_full' _item_aliases.dictionary cif_core.dic _item_aliases.version 1.0 save_ #----------------------------------------------- save__space_group.name_Schoenflies _item.name '_space_group.name_Schoenflies' _item.category_id space_group _item.mandatory_code no loop_ _item_examples.case _item_examples.detail 'C2h^5' 'Schoenflies symbol for space group 14' _item_description.description ; The Schoenflies symbol as listed in International Tables for Crystallography Vol. A denoting the proper affine class (i.e. orientation preserving affine class) of space groups (space group type) to which the space group belongs. This symbol defines the space group type independently of the coordinate system in which the space group is expressed. The symbol is given in the form 'Schoenflies point group symbol' ^ 'superscript'. ; _item_type.code char loop_ _item_enumeration.value C1^1 Ci^1 C2^1 C2^2 C2^3 Cs^1 Cs^2 Cs^3 Cs^4 C2h^1 C2h^2 C2h^3 C2h^4 C2h^5 C2h^6 D2^1 D2^2 D2^3 D2^4 D2^5 D2^6 D2^7 D2^8 D2^9 C2v^1 C2v^2 C2v^3 C2v^4 C2v^5 C2v^6 C2v^7 C2v^8 C2v^9 C2v^10 C2v^11 C2v^12 C2v^13 C2v^14 C2v^15 C2v^16 C2v^17 C2v^18 C2v^19 C2v^20 C2v^21 C2v^22 D2h^1 D2h^2 D2h^3 D2h^4 D2h^5 D2h^6 D2h^7 D2h^8 D2h^9 D2h^10 D2h^11 D2h^12 D2h^13 D2h^14 D2h^15 D2h^16 D2h^17 D2h^18 D2h^19 D2h^20 D2h^21 D2h^22 D2h^23 D2h^24 D2h^25 D2h^26 D2h^27 D2h^28 C4^1 C4^2 C4^3 C4^4 C4^5 C4^6 S4^1 S4^2 C4h^1 C4h^2 C4h^3 C4h^4 C4h^5 C4h^6 D4^1 D4^2 D4^3 D4^4 D4^5 D4^6 D4^7 D4^8 D4^9 D4^10 C4v^1 C4v^2 C4v^3 C4v^4 C4v^5 C4v^6 C4v^7 C4v^8 C4v^9 C4v^10 C4v^11 C4v^12 D2d^1 D2d^2 D2d^3 D2d^4 D2d^5 D2d^6 D2d^7 D2d^8 D2d^9 D2d^10 D2d^11 D2d^12 D4h^1 D4h^2 D4h^3 D4h^4 D4h^5 D4h^6 D4h^7 D4h^8 D4h^9 D4h^10 D4h^11 D4h^12 D4h^13 D4h^14 D4h^15 D4h^16 D4h^17 D4h^18 D4h^19 D4h^20 C3^1 C3^2 C3^3 C3^4 C3i^1 C3i^2 D3^1 D3^2 D3^3 D3^4 D3^5 D3^6 D3^7 C3v^1 C3v^2 C3v^3 C3v^4 C3v^5 C3v^6 D3d^1 D3d^2 D3d^3 D3d^4 D3d^5 D3d^6 C6^1 C6^2 C6^3 C6^4 C6^5 C6^6 C3h^1 C6h^1 C6h^2 D6^1 D6^2 D6^3 D6^4 D6^5 D6^6 C6v^1 C6v^2 C6v^3 C6v^4 D3h^1 D3h^2 D3h^3 D3h^4 D6h^1 D6h^2 D6h^3 D6h^4 T^1 T^2 T^3 T^4 T^5 Th^1 Th^2 Th^3 Th^4 Th^5 Th^6 Th^7 O^1 O^2 O^3 O^4 O^5 O^6 O^7 O^8 Td^1 Td^2 Td^3 Td^4 Td^5 Td^6 Oh^1 Oh^2 Oh^3 Oh^4 Oh^5 Oh^6 Oh^7 Oh^8 Oh^9 Oh^10 save_ #----------------------------------------------- save__space_group.Patterson_name_H-M _item.name '_space_group.Patterson_name_H-M' _item.category_id space_group _item.mandatory_code no loop_ _item_examples.case 'P -1' 'P 2/m' 'C 2/m' 'P m m m' 'C m m m' 'I m m m' 'F m m m' 'P 4/m' 'I 4/m' 'P 4/m m m' 'I 4/m m m' 'P -3' 'R -3' 'P -3 m 1' 'R -3 m' 'P -3 1 m' 'P 6/m' 'P 6/m m m' 'P m -3' 'I m -3' 'F m -3' 'P m -3 m' 'I m -3 m' 'F m -3 m' _item_description.description ; The Hermann-Mauguin symbol of the type of that centrosymmetric symmorphic space group to which the Patterson function belongs, see International Tables for Crystallography Vol A Table 2.5.1. A space or underline separates each symbol referring to different axes. Subscripts should appear without special symbols. Bars should be given as negative signs before the number to which they apply. ; _item_type.code char save_ #------------------------------------------ save__space_group.point_group_H-M _item.name '_space_group.point_group_H-M' _item.category_id space_group _item.mandatory_code no loop_ _item_examples.case -4 4/m _item_description.description ; The Hermann-Mauguin symbol denoting the geometric crystal class of space groups to which the space group belongs, and the geometric crystal class of point groups to which the point group of the space group belongs. ; _item_type.code char save_ #----------------------------------------- save__space_group.reference_setting _item.name '_space_group.reference_setting' _item.category_id space_group _item.mandatory_code no _item_description.description ; The reference setting of a given space group is the setting chosen by the International Union of Crystallography as a unique setting to which other settings can be referred using the transformation matrix column pair given in *.transform_rotation_xyz and *.transform_origin_shift. The settings are given in the enumeration list in the form '_space_group.it_number':'_space_group.name_Hall'. The space group number defines the space group type and the Hall symbol specifies the symmetry generators referred to the reference coordinate system. The reference settings chosen are identical to those listed in International Tables for Crystallography Vol. A. For the cases where more than one setting is given, the following choices have been made. For monoclinic space groups: unique axis b and cell choice 1. For space groups with two origins: origin choice 2 (origin at inversion center indicated by adding :2 to the Hermann-Mauguin symbol in the enumeration list). For rhombohedral space groups: hexagonal axes (indicated by adding :h to the Hermann-Mauguin symbol in the enumeration list. (Based on http://xtal.crystal.uwa.edu.au/, (select 'Docs', select 'space-Group Symbols') Symmetry table of Ralf W. Grosse-Kunstleve, ETH, Zurich.) The enumeration list may be extracted from the dictionary and stored as a separate CIF that can be referred to as required. ; _item_type.code char loop_ _item_enumeration.value _item_enumeration.detail 001:P_1 'C1^1 P_1' 002:-P_1 'Ci^1 P_-1' 003:P_2y 'C2^1 P_1_2_1' 004:P_2yb 'C2^2 P_1_21_1' 005:C_2y 'C2^3 C_1_2_1' 006:P_-2y 'Cs^1 P_1_m_1' 007:P_-2yc 'Cs^2 P_1_c_1' 008:C_-2y 'Cs^3 C_1_m_1' 009:C_-2yc 'Cs^4 C_1_c_1' 010:-P_2y 'C2h^1 P_1_2/m_1' 011:-P_2yb 'C2h^2 P_1_21/m_1' 012:-C_2y 'C2h^3 C_1_2/m_1' 013:-P_2yc 'C2h^4 P_1_2/c_1' 014:-P_2ybc 'C2h^5 P_1_21/c_1' 015:-C_2yc 'C2h^6 C_1_2/c_1' 016:P_2_2 'D2^1 P_2_2_2' 017:P_2c_2 'D2^2 P_2_2_21' 018:P_2_2ab 'D2^3 P_21_21_2' 019:P_2ac_2ab 'D2^4 P_21_21_21' 020:C_2c_2 'D2^5 C_2_2_21' 021:C_2_2 'D2^6 C_2_2_2' 022:F_2_2 'D2^7 F_2_2_2' 023:I_2_2 'D2^8 I_2_2_2' 024:I_2b_2c 'D2^9 I_21_21_21' 025:P_2_-2 'C2v^1 P_m_m_2' 026:P_2c_-2 'C2v^2 P_m_c_21' 027:P_2_-2c 'C2v^3 P_c_c_2' 028:P_2_-2a 'C2v^4 P_m_a_2' 029:P_2c_-2ac 'C2v^5 P_c_a_21' 030:P_2_-2bc 'C2v^6 P_n_c_2' 031:P_2ac_-2 'C2v^7 P_m_n_21' 032:P_2_-2ab 'C2v^8 P_b_a_2' 033:P_2c_-2n 'C2v^9 P_n_a_21' 034:P_2_-2n 'C2v^10 P_n_n_2' 035:C_2_-2 'C2v^11 C_m_m_2' 036:C_2c_-2 'C2v^12 C_m_c_21' 037:C_2_-2c 'C2v^13 C_c_c_2' 038:A_2_-2 'C2v^14 A_m_m_2' 039:A_2_-2b 'C2v^15 A_b_m_2' 040:A_2_-2a 'C2v^16 A_m_a_2' 041:A_2_-2ab 'C2v^17 A_b_a_2' 042:F_2_-2 'C2v^18 F_m_m_2' 043:F_2_-2d 'C2v^19 F_d_d_2' 044:I_2_-2 'C2v^20 I_m_m_2' 045:I_2_-2c 'C2v^21 I_b_a_2' 046:I_2_-2a 'C2v^22 I_m_a_2' 047:-P_2_2 'D2h^1 P_m_m_m' 048:-P_2ab_2bc 'D2h^2 P_n_n_n:2' 049:-P_2_2c 'D2h^3 P_c_c_m' 050:-P_2ab_2b 'D2h^4 P_b_a_n:2' 051:-P_2a_2a 'D2h^5 P_m_m_a' 052:-P_2a_2bc 'D2h^6 P_n_n_a' 053:-P_2ac_2 'D2h^7 P_m_n_a' 054:-P_2a_2ac 'D2h^8 P_c_c_a' 055:-P_2_2ab 'D2h^9 P_b_a_m' 056:-P_2ab_2ac 'D2h^10 P_c_c_n' 057:-P_2c_2b 'D2h^11 P_b_c_m' 058:-P_2_2n 'D2h^12 P_n_n_m' 059:-P_2ab_2a 'D2h^13 P_m_m_n:2' 060:-P_2n_2ab 'D2h^14 P_b_c_n' 061:-P_2ac_2ab 'D2h^15 P_b_c_a' 062:-P_2ac_2n 'D2h^16 P_n_m_a' 063:-C_2c_2 'D2h^17 C_m_c_m' 064:-C_2ac_2 'D2h^18 C_m_c_a' 065:-C_2_2 'D2h^19 C_m_m_m' 066:-C_2_2c 'D2h^20 C_c_c_m' 067:-C_2a_2 'D2h^21 C_m_m_a' 068:-C_2a_2ac 'D2h^22 C_c_c_a:2' 069:-F_2_2 'D2h^23 F_m_m_m' 070:-F_2uv_2vw 'D2h^24 F_d_d_d:2' 071:-I_2_2 'D2h^25 I_m_m_m' 072:-I_2_2c 'D2h^26 I_b_a_m' 073:-I_2b_2c 'D2h^27 I_b_c_a' 074:-I_2b_2 'D2h^28 I_m_m_a' 075:P_4 'C4^1 P_4' 076:P_4w 'C4^2 P_41' 077:P_4c 'C4^3 P_42' 078:P_4cw 'C4^4 P_43' 079:I_4 'C4^5 I_4' 080:I_4bw 'C4^6 I_41' 081:P_-4 'S4^1 P_-4' 082:I_-4 'S4^2 I_-4' 083:-P_4 'C4h^1 P_4/m' 084:-P_4c 'C4h^2 P_42/m' 085:-P_4a 'C4h^3 P_4/n:2' 086:-P_4bc 'C4h^4 P_42/n:2' 087:-I_4 'C4h^5 I_4/m' 088:-I_4ad 'C4h^6 I_41/a:2' 089:P_4_2 'D4^1 P_4_2_2' 090:P_4ab_2ab 'D4^2 P_4_21_2' 091:P_4w_2c 'D4^3 P_41_2_2' 092:P_4abw_2nw 'D4^4 P_41_21_2' 093:P_4c_2 'D4^5 P_42_2_2' 094:P_4n_2n 'D4^6 P_42_21_2' 095:P_4cw_2c 'D4^7 P_43_2_2' 096:P_4nw_2abw 'D4^8 P_43_21_2' 097:I_4_2 'D4^9 I_4_2_2' 098:I_4bw_2bw 'D4^10 I_41_2_2' 099:P_4_-2 'C4v^1 P_4_m_m' 100:P_4_-2ab 'C4v^2 P_4_b_m' 101:P_4c_-2c 'C4v^3 P_42_c_m' 102:P_4n_-2n 'C4v^4 P_42_n_m' 103:P_4_-2c 'C4v^5 P_4_c_c' 104:P_4_-2n 'C4v^6 P_4_n_c' 105:P_4c_-2 'C4v^7 P_42_m_c' 106:P_4c_-2ab 'C4v^8 P_42_b_c' 107:I_4_-2 'C4v^9 I_4_m_m' 108:I_4_-2c 'C4v^10 I_4_c_m' 109:I_4bw_-2 'C4v^11 I_41_m_d' 110:I_4bw_-2c 'C4v^12 I_41_c_d' 111:P_-4_2 'D2d^1 P_-4_2_m' 112:P_-4_2c 'D2d^2 P_-4_2_c' 113:P_-4_2ab 'D2d^3 P_-4_21_m' 114:P_-4_2n 'D2d^4 P_-4_21_c' 115:P_-4_-2 'D2d^5 P_-4_m_2' 116:P_-4_-2c 'D2d^6 P_-4_c_2' 117:P_-4_-2ab 'D2d^7 P_-4_b_2' 118:P_-4_-2n 'D2d^8 P_-4_n_2' 119:I_-4_-2 'D2d^9 I_-4_m_2' 120:I_-4_-2c 'D2d^10 I_-4_c_2' 121:I_-4_2 'D2d^11 I_-4_2_m' 122:I_-4_2bw 'D2d^12 I_-4_2_d' 123:-P_4_2 'D4h^1 P_4/m_m_m' 124:-P_4_2c 'D4h^2 P_4/m_c_c' 125:-P_4a_2b 'D4h^3 P_4/n_b_m:2' 126:-P_4a_2bc 'D4h^4 P_4/n_n_c:2' 127:-P_4_2ab 'D4h^5 P_4/m_b_m' 128:-P_4_2n 'D4h^6 P_4/m_n_c' 129:-P_4a_2a 'D4h^7 P_4/n_m_m:2' 130:-P_4a_2ac 'D4h^8 P_4/n_c_c:2' 131:-P_4c_2 'D4h^9 P_42/m_m_c' 132:-P_4c_2c 'D4h^10 P_42/m_c_m' 133:-P_4ac_2b 'D4h^11 P_42/n_b_c:2' 134:-P_4ac_2bc 'D4h^12 P_42/n_n_m:2' 135:-P_4c_2ab 'D4h^13 P_42/m_b_c' 136:-P_4n_2n 'D4h^14 P_42/m_n_m' 137:-P_4ac_2a 'D4h^15 P_42/n_m_c:2' 138:-P_4ac_2ac 'D4h^16 P_42/n_c_m:2' 139:-I_4_2 'D4h^17 I_4/m_m_m' 140:-I_4_2c 'D4h^18 I_4/m_c_m' 141:-I_4bd_2 'D4h^19 I_41/a_m_d:2' 142:-I_4bd_2c 'D4h^20 I_41/a_c_d:2' 143:P_3 'C3^1 P_3' 144:P_31 'C3^2 P_31' 145:P_32 'C3^3 P_32' 146:R_3 'C3^4 R_3:h' 147:-P_3 'C3i^1 P_-3' 148:-R_3 'C3i^2 R_-3:h' 149:P_3_2 'D3^1 P_3_1_2' 150:P_3_2" 'D3^2 P_3_2_1' 151:P_31_2_(0_0_4) 'D3^3 P_31_1_2' 152:P_31_2" 'D3^4 P_31_2_1' 153:P_32_2_(0_0_2) 'D3^5 P_32_1_2' 154:P_32_2" 'D3^6 P_32_2_1' 155:R_3_2" 'D3^7 R_3_2:h' 156:P_3_-2" 'C3v^1 P_3_m_1' 157:P_3_-2 'C3v^2 P_3_1_m' 158:P_3_-2"c 'C3v^3 P_3_c_1' 159:P_3_-2c 'C3v^4 P_3_1_c' 160:R_3_-2" 'C3v^5 R_3_m:h' 161:R_3_-2"c 'C3v^6 R_3_c:h' 162:-P_3_2 'D3d^1 P_-3_1_m' 163:-P_3_2c 'D3d^2 P_-3_1_c' 164:-P_3_2" 'D3d^3 P_-3_m_1' 165:-P_3_2"c 'D3d^4 P_-3_c_1' 166:-R_3_2" 'D3d^5 R_-3_m:h' 167:-R_3_2"c 'D3d^6 R_-3_c:h' 168:P_6 'C6^1 P_6' 169:P_61 'C6^2 P_61' 170:P_65 'C6^3 P_65' 171:P_62 'C6^4 P_62' 172:P_64 'C6^5 P_64' 173:P_6c 'C6^6 P_63' 174:P_-6 'C3h^1 P_-6' 175:-P_6 'C6h^1 P_6/m' 176:-P_6c 'C6h^2 P_63/m' 177:P_6_2 'D6^1 P_6_2_2' 178:P_61_2_(0_0_5) 'D6^2 P_61_2_2' 179:P_65_2_(0_0_1) 'D6^3 P_65_2_2' 180:P_62_2_(0_0_4) 'D6^4 P_62_2_2' 181:P_64_2_(0_0_2) 'D6^5 P_64_2_2' 182:P_6c_2c 'D6^6 P_63_2_2' 183:P_6_-2 'C6v^1 P_6_m_m' 184:P_6_-2c 'C6v^2 P_6_c_c' 185:P_6c_-2 'C6v^3 P_63_c_m' 186:P_6c_-2c 'C6v^4 P_63_m_c' 187:P_-6_2 'D3h^1 P_-6_m_2' 188:P_-6c_2 'D3h^2 P_-6_c_2' 189:P_-6_-2 'D3h^3 P_-6_2_m' 190:P_-6c_-2c 'D3h^4 P_-6_2_c' 191:-P_6_2 'D6h^1 P_6/m_m_m' 192:-P_6_2c 'D6h^2 P_6/m_c_c' 193:-P_6c_2 'D6h^3 P_63/m_c_m' 194:-P_6c_2c 'D6h^4 P_63/m_m_c' 195:P_2_2_3 'T^1 P_2_3' 196:F_2_2_3 'T^2 F_2_3' 197:I_2_2_3 'T^3 I_2_3' 198:P_2ac_2ab_3 'T^4 P_21_3' 199:I_2b_2c_3 'T^5 I_21_3' 200:-P_2_2_3 'Th^1 P_m_-3' 201:-P_2ab_2bc_3 'Th^2 P_n_-3:2' 202:-F_2_2_3 'Th^3 F_m_-3' 203:-F_2uv_2vw_3 'Th^4 F_d_-3:2' 204:-I_2_2_3 'Th^5 I_m_-3' 205:-P_2ac_2ab_3 'Th^6 P_a_-3' 206:-I_2b_2c_3 'Th^7 I_a_-3' 207:P_4_2_3 'O^1 P_4_3_2' 208:P_4n_2_3 'O^2 P_42_3_2' 209:F_4_2_3 'O^3 F_4_3_2' 210:F_4d_2_3 'O^4 F_41_3_2' 211:I_4_2_3 'O^5 I_4_3_2' 212:P_4acd_2ab_3 'O^6 P_43_3_2' 213:P_4bd_2ab_3 'O^7 P_41_3_2' 214:I_4bd_2c_3 'O^8 I_41_3_2' 215:P_-4_2_3 'Td^1 P_-4_3_m' 216:F_-4_2_3 'Td^2 F_-4_3_m' 217:I_-4_2_3 'Td^3 I_-4_3_m' 218:P_-4n_2_3 'Td^4 P_-4_3_n' 219:F_-4a_2_3 'Td^5 F_-4_3_c' 220:I_-4bd_2c_3 'Td^6 I_-4_3_d' 221:-P_4_2_3 'Oh^1 P_m_-3_m' 222:-P_4a_2bc_3 'Oh^2 P_n_-3_n:2' 223:-P_4n_2_3 'Oh^3 P_m_-3_n' 224:-P_4bc_2bc_3 'Oh^4 P_n_-3_m:2' 225:-F_4_2_3 'Oh^5 F_m_-3_m' 226:-F_4a_2_3 'Oh^6 F_m_-3_c' 227:-F_4vw_2vw_3 'Oh^7 F_d_-3_m:2' 228:-F_4ud_2vw_3 'Oh^8 F_d_-3_c:2' 229:-I_4_2_3 'Oh^9 I_m_-3_m' 230:-I_4bd_2c_3 'Oh^10 I_a_-3_d' save_ save__space_group.transform_rotation_xyz _item.name '_space_group.transform_rotation_xyz' _item.category_id space_group _item.mandatory_code no loop_ _item_examples.case _item_examples.detail 'a,b-a,c' 'orthohexagonal to the reference hexagonal setting' _item_description.description ; This item contains the (3x3) transformation P defined as follows: The relation between an arbitrary setting of a space group (basis vectors (a,b,c) origin O) and the reference coordinate system (basis vectors (a',b',c') origin O') is determined by an augmented affine (4x4) transformation matrix (cf. Section 5 of International Tables for Crystallography, vol. A). It consists of (3x3) rotation matrix P=(Pij) which describes the transformation of the row (a,b,c) to the row of reference basis vectors (a',b',c'): (a',b',c') = (a,b,c)P and the (3x1) column p=(pi1) which determines the origin shift of O with respect to reference origin O': O' = O + p The rotation matrix P is given as: P11a+P21b+P31c, P12a+P22b+P32c, P13a+P23b+P33c. Note that the bases (a',b',c') and (a,b,c) are both written as rows. Thus, in each of the sums P11a+P21b+P31c, P12a+P22b+P32c, P13a+P23b+P33c, a column of P is listed. This way of presenting the matrix is different from the xyz presentation of the symmetry operations (cf. _space_group_symop.operation_xyz) where the matrices of the symmetry operations are listed by rows. The reference settings are enumerated under *.reference_setting. ; _item_type.code char save_ save__space_group.transform_origin_shift _item.name '_space_group.transform_origin_shift' _item.category_id space_group _item.mandatory_code no loop_ _item_examples.case _item_examples.detail 'a/2,b/2,0' 'origin shift p = (0.5,0.5,0)' _item_description.description ; The origin shift vector, p, is defined as follows: The relation between an arbitrary setting of a space group (basis vectors (a,b,c) origin O) and the reference coordinate system (basis vectors (a',b',c') origin O') is determined by an augmented affine (4x4) transformation matrix (cf. Section 5 of International Tables for Crystallography, vol. A). It consists of (3x3) rotation matrix P=(Pij) which describes the transformation of the row (a,b,c) to the row of reference basis vectors (a',b',c'): (a',b',c') = (a,b,c)P and the (3x1) column p=(pi1) which determines the origin shift of O with respect to reference origin O': O' = O + p The reference settings are enumerated under *.reference_setting ; _item_type.code char save_ ##################################################### # # CATEGORY: SPACE_GROUP_SYMOP # ##################################################### save_SPACE_GROUP_SYMOP _category.id space_group_symop _category.description ; Contains information about the symmetry operations of the space group. ; _category.mandatory_code no loop_ _category_examples.detail _category_examples.case ; The symmetry operations for the space group P21/c ; ; loop_ _space_group_symop.id _space_group_symop.operation_xyz _space_group_symop.operation_description 1 x,y,z 'identity mapping' 2 -x,-y,-z 'inversion' 3 -x,1/2+y,1/2-z '2-fold screw rotation with axis in (0,y,1/4)' 4 x,1/2-y,1/2+z 'c glide reflection through the plane (x,1/4,y)' ; _category_key.name '_space_group_symop.id' save_ ##################################################### save__space_group_symop.generator_xyz _item.name '_space_group_symop.generator_xyz' _item.category_id space_group_symop _item.mandatory_code no loop_ _item_examples.case _item_examples.detail 'x,1/2-y,1/2+z' ; c glide reflection through the plane (x,1/4,z) chosen as one of the generators of the space group ; _item_description.description ; A parsable string giving one of the symmetry generators of the space group in algebraic form. If W is a matrix representation of the rotational part of the generator defined by the positions and signs of x, y and z, and w is a column of translations defined by the fractions, an equivalent position X' is generated from a given position X by the equation: X' = WX + w (Note: X is used to represent bold_italics_x in International Tables for Crystallography Vol. A, Section 5) When a list of symmetry generators is given, it is assumed that the complete list of symmetry operations of the space group (including the identity operator) can be generated through repeated multiplication of the generators, that is, (W3, w3) is an operation of the space group if (W2,w2) and (W1,w1) (where (W1,w1) is applied first) are either operators or generators and: W3 = W2 x W1 w3 = W2 x w1 + w2 ; _item_type.code char _item_default.value 'x,y,z' loop_ _item_related.related_name _item_related.function_code '_space_group_symop.operation_xyz' alternate save_ #----------------------------------------- save__space_group_symop.id _item_description.description ; An arbitrary identifier that uniquely labels each symmetry operation in the list. ; _item_type.code char loop_ _item.name _item.category_id _item.mandatory_code '_space_group_symop.id' space_group_symop yes loop_ _item_aliases.alias_name _item_aliases.dictionary _item_aliases.version '_symmetry_equiv_pos_site_id' cif_core.dic 1.0 '_symmetry_equiv.id' cif_mm.dic 1.0 save_ #----------------------------------------------- save__space_group_symop.operation_description _item.name '_space_group_symop.operation_description' _item.category_id space_group_symop _item.mandatory_code no _item_description.description ; An optional text description of a particular symmetry operation of the space group. ; _item_type.code char loop_ _item_dependent.dependent_name '_space_group_symop.generator_xyz' '_space_group_symop.operation_xyz' save_ #------------------------------------------------ save__space_group_symop.operation_xyz _item.name '_space_group_symop.operation_xyz' _item.category_id space_group_symop _item.mandatory_code no loop_ _item_examples.case _item_examples.detail 'x,1/2-y,1/2+z' 'c glide reflection through the plane (x,1/4,z)' _item_description.description ; A parsable string giving one of the symmetry operations of the space group in algebraic form. If W is a matrix representation of the rotational part of the symmetry operation defined by the positions and signs of x, y and z, and w is a column of translations defined by the fractions, an equivalent position X' is generated from a given position X by the equation: X' = WX + w (Note: X is used to represent bold_italics_x in International Tables for Crystallography Vol. A, Section 5) When a list of symmetry operations is given, it is assumed that the list contains all the operations of the space group (including the identity operation) as given by the representatives of the general position in International Tables for Crystallography Vol. A. ; _item_type.code char _item_aliases.alias_name '_symmetry_equiv_pos_as_xyz' _item_aliases.dictionary cif_core.dic _item_aliases.version 1.0 _item_default.value 'x,y,z' loop_ _item_related.related_name _item_related.function_code '_space_group_symop.generator_xyz' alternate save_ #------------------------------------------------ save__space_group_symop.sg_id _item.name '_space_group_symop.sg_id' _item.category_id space_group_symop _item.mandatory_code no loop_ _item_example.case _item_example.detail ? ? _item_description.description ; A child of _space_group.id allowing the symmetry operator to be identified with a particular space group. ; _item_type.code numb _item_linked.child_name '_space_group_symop.sg_id' _item_linked.parent_name '_space_group.id' save_ ##################################################### # # CATEGORY: SPACE_GROUP_WYCKOFF # # Information about the Wyckoff positions # # ##################################################### save_SPACE_GROUP_WYCKOFF _category.id space_group_Wyckoff _category.description ; Contains information about Wyckoff positions of a space group. Only one site can be given for each special position but the remainder can be generated by applying the symmetry operations stored in _space_group_symop.operation_xyz. ; _category.mandatory_code no loop_ _category_examples.detail _category_examples.case ; This example is taken from the space group F_d_-3_c (number 228 origin choice 2). For brevity only a selection of special positions are listed. The coordinates of only one site per special position can be given in this item, but coordinates of the other sites can be generated using the symmetry operations given in the SPACE_GROUP_SYMOP category. ; ; loop_ _space_group_Wyckoff.id _space_group_Wyckoff.multiplicity _space_group_Wyckoff.letter _space_group_Wyckoff.site_symmetry _space_group_Wyckoff.coord_xyz 1 192 h 1 x,y,z 2 96 g ..2 1/4,y,-y 3 96 f 2.. x,1/8,1/8 4 32 b .32 1/4,1/4,1/4 ; _category_key.name '_space_group_Wyckoff.id' save_ save__space_group_Wyckoff.coords_xyz _item.name '_space_group_Wyckoff.coords_xyz' _item.category_id space_group_Wyckoff _item.mandatory_code no loop_ _item_examples.case _item_examples.detail 'x,1/2,0' 'Coordinates of a Wyckoff site with 2.. symmetry' _item_description.description ; Coordinates of one site of a Wyckoff position expressed in terms of its fractional coordinates (x,y,z) in the unit cell. To generate the coordinates of all sites of this Wyckoff position it is necessary to multiply these coordinates by the symmetry operations stored in space_group_symop.operation_xyz. ; _item_type.code char _item_default.value 'x,y,z' save_ #---------------------------------------- save__space_group_Wyckoff.id loop_ _item.name _item.category_id _item.mandatory_code '_space_group_Wyckoff.id' space_group_Wyckoff yes _item_description.description ; An arbitrary identifier that is unique to a particular Wyckoff position. ; _item_type.code char save_ #--------------------------------------------- save__space_group_Wyckoff.letter _item.name '_space_group_Wyckoff.letter' _item.category_id space_group_Wyckoff _item.mandatory_code no _item_description.description ; The Wyckoff letter as given in International Tables for Crystallography Vol. A associated with this position. ; _item_type.code char loop_ _item_enumeration.value a b c d e f g h i j k l m n o p q r s t u v w x y z \a save_ #----------------------------------------------- save__space_group_Wyckoff.multiplicity _item.name '_space_group_Wyckoff.multiplicity' _item.category_id space_group_Wyckoff _item.mandatory_code no _item_description.description ; The multiplicity of this Wyckoff position as given in International Tables Vol A. It is the number of equivalent sites per conventional unit cell. ; _item_type.code numb loop_ _item_range.maximum _item_range.minimum . 1 1 1 save_ #------------------------------------------------ save__space_group_Wyckoff.sg_id _item.name '_space_group_Wyckoff.sg_id' _item.category_id space_group_Wyckoff _item.mandatory_code no loop_ _item_example.case _item_example.detail ? ? _item_description.description ; A child of _space_group.id allowing the Wyckoff position to be identified with a particular space group. ; _item_type.code char _item_linked.child_name '_space_group_Wyckoff.sg_id' _item_linked.parent_name '_space_group.id' save_ #------------------------------------------------ save__space_group_Wyckoff.site_symmetry _item.name '_space_group_Wyckoff.site_symmetry' _item.category_id space_group_Wyckoff _item.mandatory_code no loop_ _item_examples.case _item_examples.detail 2.22 'Position 2b in space group number 94, P_42_21_2' 42.2 'Position 6b in space group number 222, P_n_-3_n' 2.. ; Site symmetry for the Wyckoff position 96f in space group 228, F_d_-3_c. The site symmetry group is isomorphic to the point group 2 with the 2-fold axis along one of the {100} directions. ; _item_description.description ; The subgroup of the space group that leaves the point fixed. It is isomorphic to a subgroup of the point group of the space group. The site symmetry symbol indicates the symmetry in the symmetry direction determined by the Hermann-Mauguin symbol of the space group (see International Tables for Crystallography Vol A Section 2.12). ; _item_type.code char save_ ################################################### ## loop_ _dictionary_history.version _dictionary_history.update _dictionary_history.revision 0.01 1998-11-27 ; (I.D.Brown) Creation of first draft of the dictionary. Contains the categories SPACE_GROUP, SPACE_GROUP_POS, SPACE_GROUP_REFLNS and SPACE_GROUP_COORD ; 0.02 1999-02-15 ; (IDB) Changes made in response to suggestions from the project group. New categories introduced SPACE_GROUP_SYMOP SPACE_GROUP_ASYM. The following category name changes were made: SPACE_GROUP_POS to SPACE_GROUP_WYCKOFF SPACE_GROUP_REFLNS to SPACE_GROUP_WYCKOFF_CONDITIONS SPACE_GROUP_COORD to SPACE_GROUP_WYCKOFF_COORD The items are arranged in alphabetical order Many other changes made in response to comments received including new data names for space group names ; 0.03 1999-09-01 ; IDB Definitions of _space_group.IT_number, *.name_schoenflies *.Bravais_type, *point_group_H-M, *.crystal_system and *.Laue_class changed to those supplied by Litvin and Kopsky. *.setting_code changed to *.it_coordinate_system_code. *.name_H-M-K dropped. *.Patterson_symmetry_H-M changed to *.Patterson_name_H-M and enumeration list corrected. *.reference_setting added In category space_group_symop 'operator' changed to 'operation'. _space_group_symop.operation_matrix changed to conform to IT. _space_group_symop.generator_* added. _space_group.reference_setting added. _space_group_Wyckoff.* and related categories rewritten to avoid conflicting parent-child relations. Removal of *_coord.* and addition of *_cond_link.* ; 0.04 1999-11-01 ; IDB List of reference settings imported from Ralf Grosse-Kunstleve supplied 1999-10-29 by RWGK based on http://xtal.crystal.uwa.edu.au/ (Select 'Docs', Select 'space Group Symbols') Symmetry table of Ralf W. Grosse-Kunstleve, ETH, Zuerich. version June 1995 updated September 29 1995 updated July 9 1997 last updated July 24 1998 Matrices expanded into separate items for each element. References added for *_wyckoff.site_symmetry and *.IT_coordinate_system_code. *_asym category deleted. Numerous typographical errors corrected ; 0.05 2000-01-12 ; IDB Further clarifications to definitions as suggested by Aroyo, Wondratschek, Madariaga, Litvin and Grosse-Kunstleve. Removal of all matrix forms of matrices (leaving xyz form) in the hope that a new DDL will make matrix representation simpler. Removal of *_Wyckoff_cond and *_Wyckoff_cond_link categories until a new DDL simplifies their structure. Added _space_group.transform_* items ; 0.06 2000-05-04 ; IDB Further clarification of definitions as suggested by Aroyo, Wondratschek, Madariaga and Grosse-Kunstleve, particularly clarification of the Hermann-Mauguin symbols and Bravais types and changes to conform to the usage of ITA. ; 0.07 2000-07-18 ; IDB Further clarifications and corrections from Wondratschek and Grosse-Kunstleve. Dictionary checked in vcif. Brian McMahon: Structural review for COMCIFS. Some reformatting and cleaning up of minor typos. Checked against vcif and cyclops. ; 0.08 2000-07-20 ; J. Westbrook Miscellaneous corrections and reformatting from software scan. ; 0.09 2001-05-31 ; IDB The links between the space_group category and the space_group_symop and space_group_Wyckoff categories are corrected as well as the links between space_group_symop and the various geom_ categories. Brian McMahon: Changed type of _space_group_symop.sg_id to numb at request of IDB. ;
- Prev by Date: Comcifs annual report
- Next by Date: Annual report
- Prev by thread: Comcifs annual report
- Next by thread: Annual report
- Index(es):